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The effects of crack ratios and positions on the fundamental frequencies and buckling

loads of slender cantilever Euler beams with a single-edge crack are investigated both

experimentally and numerically using the finite element method, based on energy

approach. The governing matrix equations are derived from the standard and cracked

beam elements combined with the local flexibility concept. The experiments are

conducted using specimens having edge cracks of different depths at different positions

to validate the numerical results obtained. The numerical results are shown to be in

good agreement with the experimental results for the considered crack ratios.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Beams and beamlike elements are principal constituent of many mechanical structures and used widely in high speed
machinery, aircraft and lightweight structures. The lateral-torsional buckling performance of slender beams like turbine
blade or aircraft wing is a limiting state that may often be a control factor in beam designs [1]. So this subject has received
significant attention since Timoshenko and Gere [2] discussed it in their book, although the pioneering works were
initiated in the beginning of 1900s. However, comparatively little work on lateral-torsional buckling of slender beams has
been reported in the literature since then. The objective of this paper is to study the effects of crack ratio, a/h and crack
location, L1 on the lateral buckling capacity and free vibration of cantilever slender rectangular beams with an open single-
edge crack, experimentally to validate the results obtained from numerical analysis and to provide information for the
future researches.

In 1975, Hodges and Peters [3] quantified and modified the deficient analytical solutions for buckling loads given in the
previous literature using asymptotic expansion methods. In subsequent works, the topic was dealt with analytically
[1,4–7], by plotting [8], by FEM [9–11] and experimentally [12–14]. In the aforementioned studies, the beams considered
are intact, that is, they do not contain any defect such as cracks. But, during operation, all structural elements are subjected
to degenerative effects that may cause initiation of structural defects such as cracks which, as time progresses, lead to the
catastrophic failure or breakdown of the structure [15]. So, the knowledge of the behavior of defected element is of great
importance to be able to maintain the structural integrity and to generate safety parameters. As has been stated in almost
all papers related to the vibration of the cracked structures, the existence of a crack reduces the local stiffness and
consequently static, dynamic and stability behaviors of a structural element are altered such that these alterations may be
used to detect the crack location and its size.
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Nomenclature

a crack depth
A cross-sectional area of the beam
b thickness of the beam
d length of the finite element
d1 crack position on the finite element
E modulus of elasticity
f 1c fundamental frequency of the cracked beam
f 1nc fundamental frequency of the non-cracked

beam
Fjnða=hÞ correction function
G shear modulus
h width of the beam
Iy, Iz second moments of area of cross-section

about y- and z-axis
Iyz polar moment of inertia
J torsional constant
JðaÞ strain energy release rate
K In; K IIn; KIIIn stress intensity factors for three fracture

modes (n ¼ 1, 2,y,6)
L length of the beam
L1 crack location on the beam
MðxÞ external moment about z-axis
Mx0 ; My0 ; Mz0 bending moments induced by buckling at

any section of beam
My1; My2 lateral moments at crack section about y-axis
Mz1; Mz2 vertical moments at crack section about

z-axis
Pc critical (the lowest) buckling load of cracked

beam
Pcr critical (the lowest) buckling load
Pnc critical (the lowest) buckling load of non-

cracked beam

P1�6; Pi; Pn generalized loading (i, n ¼ 1, 2,y,6)
qi nodal displacements (i ¼ 1, 2,y,10)
T1; T2 torsional moments at crack section about

x-axis
ui additional displacements along the direction

of loading Pi

U elastic potential energy
Us strain energy
vðxÞ displacement in the direction of y-axis
V work done by vertical tip load
wðxÞ displacement in the direction of z-axis
x coordinate axis along the beam length
y coordinate axis along the beam width
z coordinate axis along the beam thickness
a variable along crack depth
gðxÞ rotation about x-axis
n Poisson’s ratio
r mass density
sn uniform remote stress at the cross-section

away from crack created by generalized
loading (n ¼ 1, 2, y,6)

c subscript—abbreviation for the word
‘‘cracked’’

cr subscript—abbreviation for the word ‘‘critical’’
i numerator for the generalized loading and

general sorting
j numerator for the crack modes and general

rowing
l subscript—abbreviation for the word ‘‘left’’
n numerator for the generalized loading
nc subscript—abbreviation for the word ‘‘non-

cracked’’
r subscript—abbreviation for the word ‘‘right’’
s subscript—abbreviation for the word ‘‘strain’’
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The effects of cracks on the dynamic behaviors of beams have been the subject of many investigations. Since it is
impossible to mention all of them, the reader is referred to the survey paper by Dimarogonas [16], where information and
related literature can be found. In addition, several works can be mentioned as follows: Shen and Pierre [17] demonstrated
a model for the prediction of the dynamic response of cracked beams and investigated the effects of a single surface crack
on the free vibration of cantilever beams analytically and numerically. Eigenfrequencies of a cantilever beam with a
transverse on-edge non-propagating open crack were investigated by Krawczuk and Ostachowicz [18], presenting two
models of beam. Bamnios and Trochides [19] studied the influence of a transverse surface crack on the dynamic behavior of
a cantilever beam both analytically and experimentally.

The vibration characteristics of a uniform Bernoulli–Euler beam with a single-edge crack were investigated by
Yokoyama and Chen [20], using a modified line-spring model. Chaudhari and Maiti [21] proposed a modeling of transverse
vibration of a beam with an open edge-crack, using the concept of a rotational spring to represent the crack section. A
cracked beam finite element based on elasto-plastic fracture mechanics and the finite element method was formulated by
Krawczuk et al. [22]. Orhan [23] studied the free and forced vibration of cantilever beam having a V-shaped edge crack,
using a finite element program (Ansys).

As can be seen from the existing literature, compared to vast investigation on crack effects to dynamics of usual beams
of isotropic and homogeneous or composite material, unfortunately, much less investigation on lateral-torsional buckling
capacity and dynamics of cracked slender beams has been reported. To cite only one: Wang et al. [24] have investigated the
coupled bending and torsional vibration of a fiber-reinforced composite cantilever slender beam with an edge crack. They
have modeled the crack with a local flexibility matrix.

In the present study a finite element algorithm based on energy method is developed and experiments are carried out in
order to verify the results obtained from the proposed numerical method. Matlab software is used for the numerical
calculations. The local flexibility approach is adopted to model the crack, based on linear fracture mechanics and the
Castigliano theorem. The Euler–Bernoulli assumptions are used in modeling the beam. The crack is assumed to be always
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open and non-propagating in progress of time. It is also assumed that the crack affects only stiffness of the beam whereas
the mass [18,25] and damping [25] of beam remain unchanged. As far as the authors know, both the lateral-torsional
buckling capacity and free vibration of the cracked cantilever slender beam made of isotropic and homogeneous material
together has not been studied prior to the work presented in this paper.
2. The local flexibility due to the crack

The cracked beam configuration considered is shown in Fig. 1. A crack on a beam introduces considerable local flexibility
due to the strain energy concentration in the vicinity of the crack tip under load. The idea of an equivalent spring i.e. a local
compliance is used to quantify, in a macroscopic way, the relation between the applied load and the strain concentration
around the tip of the crack [26]. A beam element of rectangular cross-section has an edge crack with a tip line parallel to
the z-axis i.e. with a uniform depth. A generalized loading is indicated by six general forces: an axial force P1, shear forces P2

and P3, bending moments P4 and P5, a torsional moment P6 [24,26] as seen in Fig. 2.
According to the Castigliano’s theorem and the Paris equation, the relation between the additional displacement along

the direction of loading Pi and the strain energy Us is given by

ui ¼
qUs

qPi
¼

q
qPi

Z a

0
JðaÞda (1)

where JðaÞ ¼ qUs=qa is the strain energy release rate, a is the crack depth. Thus, the local compliance, by definition, is

cij ¼
qui

qPj
¼

q2

qPiqPj

Z a

0
JðaÞda (2)

For general loading of the cracked section, the strain energy release rate JðaÞ is given [16,26–28] as

JðaÞ ¼ 1

E0
X6

n¼1

KIn

 !2

þ
X6

n¼1

KIIn

 !2

þ ð1þ nÞ
X6

n¼1

KIIIn

 !2
2
4

3
5 (3)
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Fig. 1. Lateral buckling of a cracked cantilever beam loaded with a vertical force.
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Fig. 2. Schematic view of a cracked beam under generalized loading conditions.
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where E0 ¼ E for plane stress, E0 ¼ E=ð1� n2Þ for plane strain, KIn; KIIn; K IIIn are the stress intensity factors (SIFs) of the
three modes of fracture (opening, sliding and tearing type) corresponding to generalized loading Pn, respectively.

To obtain results for the stress intensity factors for an edge crack on a beam, the beam is considered as an assembly of
strips ordered along the z-axis as shown in Fig. 3. Hereby, the strain energy release rate JðaÞ has to be integrated along the
crack width b to give [16]

cij ¼
qui

qPj
¼

q2

qPiqPj

Z b=2

�b=2

Z q

0
JðaÞdadz (4)

Substituting Eq. (3) in Eq. (4) yields the general equation for the local compliances as follows:

cij ¼
q2

qPiqPj

Z b=2

�b=2

Z a

0

1

E0
X6

n¼1

KIn

 !2

þ
X6

n¼1

KIIn

 !2

þm
X6

n¼1

KIIIn

 !2
2
4

3
5dadz

8<
:

9=
; (5)

Eq. (5) gives the components of the complete flexibility matrix of the cracked section with the expressions for the stress
intensity factors which can be expressed as

Kjn ¼ sn
ffiffiffiffiffiffi
pa
p

Fjnða=hÞ; j ¼ I; II; III; n ¼ 1;2; . . . ;6 (6)

where sn is the uniform remote stress at the cross-section away from the crack due to the n-th independent loading, a and
h are the crack depth and beam width, respectively, Fjnða=hÞ represents the correction function which takes into account
finite dimensions of the beam [18] and takes the form for different geometry and loading modes.

The beam can be in equilibrium in a slightly buckled form when the critical load is acting. As a result of buckling, three
moments, namely Mx0 ; My0 and Mz0 are induced at any section, about a second set of coordinate axes x0; y0; z0 that move
relatively with the section as it deforms. Mx0 , My0 and Mz0 describe twisting, lateral bending and vertical bending of the
beam, respectively [11,29]. Correspondingly, the loads that the beam could take are the vertical bending (P4), the lateral
bending (P5) and the torsional moment (P6) as shown in Fig. 4. Thus, only the components in the flexibility matrix related to
i; j ¼ 4;5;6 are needed. Relating to the loadings considered, the stress intensity factors needed, given with Eq. (6), are
α

dαa

dz z

z

y

b

h

Fig. 3. Cracked section geometry.
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Fig. 4. Three moments present at any section during buckling.
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determined [18,24] as

KI4 ¼ s4

ffiffiffiffiffiffi
pa
p

F1ða=hÞ; s4 ¼
6P4

bh2

K I5 ¼ s5
ffiffiffiffiffiffi
pa
p

F2ða=hÞ; s5 ¼
12P5

hb3
z

K I1 ¼ K I2 ¼ K I3 ¼ K I6 ¼ 0

KII1 ¼ K II2 ¼ KII3 ¼ K II4 ¼ KII5 ¼ K II6 ¼ 0

KIII6 ¼ s6

ffiffiffiffiffiffi
pa
p

FIIIða=hÞ; s6 ¼
24P6p3

p5hb2
� 192b3

cos
p
b

z
� �

K III1 ¼ K III2 ¼ K III3 ¼ K III4 ¼ K III5 ¼ 0 (7)

where

F1ða=hÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
tan l
l

r
½0:923þ 0:199ð1� sin lÞ4�= cos l; l ¼

pa

2h
(7a)

F2ða=hÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
tan l
l

r
½0:752þ 0:0:02ða=hÞ þ 0:37ð1� sin lÞ3�= cos l (7b)

FIIIða=hÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
tan l
l

r
(7c)

and s4; s5 denote bending stresses induced by bending, s6 denotes the shear stress induced by torsion along the short
edge of the cross-section, determined using the classical theory of elasticity [24]. Using the SIFs in Eq. (7), Eq. (5) becomes

cij ¼
q2

qPiqPj

Z b=2

�b=2

Z a

0

1

E0
½ðKI4 þ K I5Þ

2 þmðKIII6Þ
2�dadz

( )
(8)

Based on Eqs. (5) and (8), the final local flexibility matrix with the components of interest can be formed as

cij ¼

c44 0 0

0 c55 0

0 0 c66

2
64

3
75 (9)

3. The finite element model

A finite element model is developed to represent a cracked beam element of length d and the crack is located at a
distance d1 from the left end of the element as shown in Fig. 5. The element is then considered to be split into two segments
by the crack. The left and right segments are represented by non-cracked subelements. The crack represents net ligament
1 2

q2 q4

q1 q3

v1 v2

c44d1
d

q9

1

q10 1
c66

2

2

q6

q5

1

w1
q8

q7

2

c55

w2

vertical 
bending

lateral
bending
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Fig. 5. The cracked beam finite element.
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effect created by loadings. This effect can be related to the deformation of the net ligament through the compliance
expressions ðcijÞ by replacing the net ligament with a fictitious spring connecting both faces of the crack [20]. So, the spring
effects are introduced to the system by using the local flexibility matrix given by Eq. (9). The cracked or non-cracked
element has two nodes with five degrees of freedom in each node. They are denoted as vertical bending displacements
ðv1;v2Þ, lateral bending displacements ðw1;w2Þ, slopes ðv01;v

0
2;w
0
1;w
0
2Þ and rotations about x-axis ðg1; g2Þ, where prime ð0Þ

denotes differentiation with respect to the longitudinal coordinate x.
The displacements vðxÞ;wðxÞ due to vertical and lateral bending are approximated by cubic polynomials [11,17,22,26],

while the rotation gðxÞ can be expressed by linear functions, for the left and right segments of the element.
for 0pxpd1,

v1ðxÞ ¼ a1 þ a2xþ a3x2 þ a4x3

w1ðxÞ ¼ b1 þ b2xþ b3x2 þ b4x3

g1ðxÞ ¼ c1 þ c2x (10a)

for d1pxpd,

v2ðxÞ ¼ a5 þ a6xþ a7x2 þ a8x3

w2ðxÞ ¼ b5 þ b6xþ b7x2 þ b8x3

g2ðxÞ ¼ c3 þ c4x (10b)

The coefficients a1�8; b1�8; c1�4 of the polynomials can be expressed uniquely in terms of the boundary conditions
shown in Fig. 5 and the local flexibility concept at the crack location. Eventually the following expressions are obtained for a
cracked element:

Vertical bending:

v1ð0Þ ¼ q1; v01ð0Þ ¼ q2

v2ðdÞ ¼ q3; v02ðdÞ ¼ q4 (11a)

Lateral bending:

w1ð0Þ ¼ q5; w01ð0Þ ¼ q6

w2ðdÞ ¼ q7; w02ðdÞ ¼ q8 (11b)

Twisting about x-axis:

g1ð0Þ ¼ q9; g2ðdÞ ¼ q10 (11c)

At the crack location d1, the flexibility concept requires:
Vertical bending:
(a)
 Continuity of the vertical displacement

v1ðd1Þ ¼ v2ðd1Þ (12a)
(b)
 Discontinuity of the cross-sectional rotation

v02ðd1Þ ¼ v01ðd1Þ þ c44Mz1ðd1Þ (12b)

where Mz1ðd1Þ ¼ EIzv001jx¼d1
.

(c)
 Continuity of the vertical bending moment

Mz1ðd1Þ ¼ Mz2ðd1Þ (12c)
(d)
 Continuity of the shear force

Sy1ðd1Þ ¼ Sy2ðd1Þ (12d)

Lateral bending:

(e)
 Continuity of the lateral displacement

w1ðd1Þ ¼ w2ðd1Þ (13a)
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(f)
 Discontinuity of the cross-sectional rotation

w02ðd1Þ ¼ w01ðd1Þ þ c55My1ðd1Þ (13b)

where My1ðd1Þ ¼ EIyw001jx¼d1
.

(g)
 Continuity of the lateral bending moment

My1ðd1Þ ¼ My2ðd1Þ (13c)
(h)
 Continuity of the shear force

Sz1ðd1Þ ¼ Sz2ðd1Þ (13d)

Twisting about x-axis:

(i)
 Discontinuity of the torsional angle

g2ðd1Þ ¼ g1ðd1Þ þ c66T1ðd1Þ (14a)

where T1ðd1Þ ¼ GJg01jx¼d1
.

(j)
 Continuity of the torsional moment

T1ðd1Þ ¼ T2ðd1Þ (14b)
By considering Eq. (10) describing the displacements for the left and right part of the element and rearranging Eqs.
(11)–(14), the nodal displacements can be expressed in matrix forms as

qv ¼ Dva; qw ¼ Dwb; qc ¼ Dcc (15)

where

qv ¼ ½q1 q2 0 0 0 0 q3 q4�
T

qw ¼ ½q5 q6 0 0 0 0 q7 q8�
T

qc ¼ ½q9 0 0 q10�
T (15a)

a ¼ ½a1 a2 a3 a4 a5 a6 a7 a8�
T

b ¼ ½b1 b2 b3 b4 b5 b6 b7 b8�
T

c ¼ ½c1 c2 c3 c4�
T (15b)

and Dv; Dw; Dc matrices are given by Eq. (A.1) in Appendix.
Matrices in Eq. (15) can be written in compact form as

qv

qw

qc

8><
>:

9>=
>;

20�1

¼ D20�20

a

b

c

8><
>:

9>=
>;

20�1

(16)

Taking the inverse of Eq. (16), the matrix giving the constants a1�8; b1�8; c1�4 is obtained as

a

b

c

8><
>:

9>=
>;

20�1

¼ C120�20

qv

qw

qc

8><
>:

9>=
>;

20�1

(17)

where C1 ¼ D�1. Using Eq. (17), the expressions relating the constants to the nodal displacements can be presented as
follows:

a1 ¼ C11q1 þ C12q2 þ C17q3 þ C18q4 þ C19q5 þ C110q6 þ C115q7 þ C116q8 þ C117q9 þ C120q10

a2 ¼ C21q1 þ C22q2 þ C27q3 þ C28q4 þ C29q5 þ C210q6 þ C215q7 þ C216q8 þ C217q9 þ C220q10

�

b1 ¼ C91q1 þ C92q2 þ C97q3 þ C98q4 þ C99q5 þ C910q6 þ C915q7 þ C916q8 þ C917q9 þ C920q10

�

c1 ¼ C171q1 þ C172q2 þ C177q3 þ C178q4 þ C179q5 þ C1710q6 þ C1715q7 þ C1716q8 þ C1717q9 þ C1720q10

� (18)
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or in matrix form

a

b

c

8><
>:

9>=
>;

20�1

¼ C20�10

qv

qw

qc

8><
>:

9>=
>;

10�1

(19)

Thus, substituting Eq. (19) into Eqs. (10a) and (10b), the displacements at any point of the element are obtained in
matrix form:

for 0pxpd1

v1 ¼ Pa1; w1 ¼ Pb1; c1 ¼ Rc1 (20a)

for d1pxpd

v2 ¼ Pa2; w2 ¼ Pb2; c2 ¼ Rc2 (20b)

in which the matrices a1;b1; c1; a2;b2; c2;P and R are given by Eq. (A.2) in Appendix. So, the generalized displacement
vector can be expressed as

qe ¼ ½q1 q2 q5 q6 q9 q3 q4 q7 q8 q10�
T (21)

4. Energy equations

Energy equations should be expressed separately for the cracked element and intact elements on the left and right side
of the cracked element. The elastic potential energy U, with the warping and shear effects neglected, due to vertical and
lateral bendings and twisting, of an Euler beam with an elemental length d is given [2,11,27,30,31]:

for the intact elements on the left side of the cracked element:

Ul ¼
1

2

Z d

0
EIzðv

00
1Þ

2 dx

 !
þ

1

2

Z d

0
EIyðw

00
1Þ

2 dx

 !
þ

1

2

Z d

0
GJðg01Þ

2 dx

 !
(22a)

for the cracked element:

Uc ¼
1

2

Z d1

0
EIzðv

00
1Þ

2 dx

 !
þ

1

2

Z d1

0
EIyðw

00
1Þ

2 dx

 !
þ

1

2

Z d1

0
GJðg01Þ

2 dx

 !

þ
1

2

Z d

d1

EIzðv
00
2Þ

2 dx

 !
þ

1

2

Z d

d1

EIyðw
00
2Þ

2 dx

 !
þ

1

2

Z d

d1

GJðg02Þ
2 dx

 !
(22b)

for the intact elements on the right side of the cracked element:

Ur ¼
1

2

Z d

0
EIzðv

00
2Þ

2 dx

 !
þ

1

2

Z d

0
EIyðw

00
2Þ

2 dx

 !
þ

1

2

Z d

0
GJðg02Þ

2 dx

 !
(22c)

Similarly, the kinetic energy T of an element in length d of an Euler beam is given as:
for the intact elements on the left side of the cracked element:

Tl ¼
1

2
r
Z d

0
Að _v2

1 þ _w2
1 þ Iyz _g2

1Þdx

" #
(23a)

for the cracked element:

Tc ¼
1

2
r
Z d1

0
Að _v2

1 þ _w2
1 þ Iyz _g2

1Þdx

" #
þ

1

2
r
Z d

d1

Að _v2
2 þ _w2

2 þ Iyz _g2
2Þdx

" #
(23b)

for the intact elements on the right side of the cracked element:

Tr ¼
1

2
r
Z d

0
Að _v2

2 þ _w2
2 þ Iyz _g2

2Þdx

" #
(23c)

in which the first, second and third terms represent the energies due to vertical, lateral and twisting motions, respectively.
The work done V by the vertical displacement of a tip load P as the beam buckles is given [11,13,14]:
for the intact elements on the left side of the cracked element:

Vl ¼

Z d

0
MðxÞg1ðw

00
1Þdx (24a)
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for the cracked element:

Vc ¼

Z d1

0
MðxÞg1ðw

00
1Þdxþ

Z d

d1

MðxÞg2ðw
00
2Þdx (24b)

for the intact elements on the right side of the cracked element:

Vr ¼

Z d

0
MðxÞg2ðw

00
2Þdx (24c)

where MðxÞ ¼ PðL� xÞ.

5. Equation of motion

By substituting the expressions of Eq. (20) into the energy equations. (22)–(24), the elastic stiffness matrix ke,
geometrical stiffness matrix kg and mass matrix me are obtained for both cracked finite element and intact finite elements.
Mass and stiffness matrices of each beam element are used to form global mass and stiffness matrices. By performing the
required operations for the entire system, one obtains the following governing matrix equations giving natural frequency
and critical buckling load, respectively:

ðK� f 2MÞq ¼ 0 (25a)

ðK� PcrKgÞq ¼ 0 (25b)

where K;Kg and M represent global elastic stiffness, geometrical stiffness and mass matrices, respectively.

6. Detail of test specimens

Shanmugam and Thevendran [14] state that large-scale model tests, although desirable for proper representation of the
behavior of a prototype, are expensive and time consuming. The amount of test data that could be obtained would,
therefore, be limited. Use of small-scale models to simulate the behavior of large scale structures would be advantageous.
Following their advice, in this study, small-scale beam models made of carbon-steel sheet are used. The specimens have a
length of 350 mm (span length L ¼ 250 mm plus support length 100 mm), thickness b ¼ 1 mm and width h ¼ 25 mm. They
are laser cut from carbon-steel sheet carefully to the required dimensions. Cracks are simulated by very thin slots with a
width of 0.2 mm which are also made by laser cut. The cracked test specimens are grouped under 10 categories to study the
effect of crack position and crack ratio. Grouping is made according to, essentially, predetermined crack position, namely
L1 ¼ 0:0L, L1 ¼ 0:1L, etc., up to L1 ¼ 0:9L. There are five edge cracked beams with a crack ratio (a/h) ranging from 0.1 to 0.5
in each group. In addition to 45 cracked beams, extra two beams without any crack are prepared to determine the buckling
load and free vibration. Thus, the considered crack positions and crack lengths are L1 ¼ 0, 25, 50, 75, 100, 125, 150, 175, 200,
225 mm, a ¼ 2.5, 5, 7.5, 10, 12.5 mm.

In the works referenced here crack ratio was generally considered up to 0.6, except the works of Shen and Pierre [17],
Orhan [23], Fernandez-Saez et al. [31] and Gudmundson [32]. This consideration may be due to the fact that the
expressions (7a) and (7b) are valid for crack ratios up to 0.6 [20] and to extend the investigation for crack ratios larger than
0.6 was found impractical [28]. In the present study, numerical analyses and experiments are performed considering the
crack ratios up to 0.5.

7. Experimental procedures

The test fixture needed has to be robust and stabile to test the specimens under loading. Two angles fitted to a steel-
frame are used to clamp the specimens securely by bolting so that the fix-end condition is properly ensured. The
experimental program is implemented in two stages. The specimens are tested to ascertain the fundamental frequencies in
first stage and the buckling loads in second stage. Experimental procedure is the same for all specimens. Each of 47
specimens is adjusted horizontally by bubble level and fixed by steel angles in turn and is tested at the span of 250 mm for,
firstly, the free vibration and for, secondly, the buckling load.

The experimental set-up for free vibration is shown schematically in Fig. 6a. A miniature transducer is used to measure
frequency of the lateral vibration and is mounted on a place which is as close as possible to the fix-end to diminish the
effect of transducer mass added to that of specimen on vibration. Signal conditioning and integration are carried out in
related hardware. LabView 7 software is used for data acquisition and storage, display and assessment of spectra. Vibration
measurements are made by applying an impulse to the specimen and letting it vibrate freely.

The specimens are tested under single point loading acting at the centroid of the free end cross-section. For this, a hole
of 2 mm diameter, which is very close to the free end, is made to provide a bearing for a diamond shaped arrangement used
to suspend the weight hanger vertically below the centroid of the free end (Fig. 6b). The purpose of the diamond shaped
arrangement is to ensure the rotation of the side of the beam without touching the hooked end of the weight hanger during
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Fig. 6. (a) The experimental set-up for free vibration measuring. (b) Schematic layout of the lateral buckling test rig.
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lateral buckling. The hooked end of the weight hanger is suspended from the bottom corner of the diamond shaped
arrangement to ensure that the line of action of the weights always passes vertically through the centroid of the free end
cross-section. Lateral stops at selected locations along the span length are provided in order to avoid excessive lateral
deflections which may lead to failure of the specimens. Load is applied in increments by adding weights each time to the
hanger, starting from zero. Smaller incremental weights are used as the applied load approaches the critical load. The
buckling load is obtained by weighing the total weight under which the specimen makes instantaneous excessive lateral
deflection.

8. Results and discussions

To verify the reliability (accuracy) and validity of the present finite element model, the fundamental frequencies and the
critical (the lowest) buckling loads for 45 beams with edge cracks of different lengths at different positions and for two
beams without crack have been experimentally examined. In the finite element analysis using Matlab software, the
numerical results have been also obtained for the experimentally investigated beams having same crack lengths and crack
positions. In the numerical analyses, the beam is discretized with 11 finite elements and the material properties have been
taken as E ¼ 184.21 GPa, G ¼ 70.85 GPa,n ¼ 0:3, r ¼ 7810 kg/m3.

8.1. Frequency experiments

The experimental results along with the corresponding numerical results and differences between them are given in
Table 1. The results related to non-cracked beams are also included in Table 1. In addition to the Table 1, Figs. 7(a–k) show
the effect of the crack ratio a/h on the fundamental frequencies of the cracked beams having different crack positions. Each
plot, basically, contains two curves showing experimental and numerical results. Curve for the experimental results is
presented by the best-fit line through the data points. The fundamental frequencies f 1c of cracked beams obtained from
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Table 1
Fundamental frequencies obtained experimentally and numerically for cracked and non-cracked beams.

Fundamental frequency, f1c (Hz)

L1/L 0.0 0.1 0.2

a/h Exp. FEM Diff. (%) Exp. FEM Diff. (%) Exp. FEM Diff. (%)

0.1 12.324 12.535 1.72 12.298 12.536 1.93 12.352 12.536 1.49

0.2 12.126 12.472 2.85 12.224 12.474 2.05 12.275 12.477 1.64

0.3 12.023 12.325 2.51 12.145 12.333 1.55 12.152 12.342 1.56

0.4 11.925 12.006 0.68 11.953 12.030 0.65 12.028 12.054 0.22

0.5 11.627 11.316 �2.67 11.797 11.384 �3.50 11.822 11.450 �3.15

L1/L 0.3 0.4 0.5

a/h Exp. FEM Diff. (%) Exp. FEM Diff. (%) Exp. FEM Diff. (%)

0.1 12.348 12.537 1.53 12.327 12.537 1.70 12.376 12.538 1.30

0.2 12.275 12.480 1.67 12.277 12.482 1.67 12.376 12.485 0.88

0.3 12.203 12.355 1.24 12.227 12.357 1.06 12.327 12.364 0.30

0.4 12.101 12.075 �0.21 12.152 12.094 �0.48 12.302 12.110 �1.56

0.5 12.002 11.505 �4.14 12.102 11.550 �4.56 12.302 11.586 �5.82

L1/L 0.6 0.7 0.8

a/h Exp. FEM Diff. (%) Exp. FEM Diff. (%) Exp. FEM Diff. (%)

0.1 12.398 12.538 1.13 12.473 12.539 0.53 12.475 12.539 0.52

0.2 12.375 12.487 0.91 12.426 12.490 0.52 12.429 12.492 0.51

0.3 12.375 12.371 �0.03 12.402 12.377 �0.20 12.405 12.382 �0.18

0.4 12.326 12.124 �1.64 12.376 12.137 �1.94 12.375 12.147 �1.84

0.5 12.252 11.613 �5.21 12.376 11.632 �6.02 12.375 11.643 �5.92

L1/L 0.9 Non-cracked (f1nc)

a/h Exp. FEM Diff. (%) Exp. FEM Diff. (%)

0.0 – – – 12.527 12.555 0.22

0.1 12.501 12.540 0.31

0.2 12.452 12.494 0.34

0.3 12.426 12.387 �0.32

0.4 12.405 12.156 �2.00

0.5 12.376 11.648 �5.89
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both numerical solutions and experiments are normalized by the fundamental frequency f 1nc of the non-cracked beam
obtained from experiments. It is obvious from both Table 1 and plots that a good agreement is observed between the
results up to the crack ratio a=h ¼ 0:5 for all crack positions. But, as two curves progress together along the abscissa, the
curve of numerical results branches off down just after the crack ratio a=h ¼ 0:3 depending on the crack positions and
makes difference with the curve of experiments. But, the difference does not exceed 6%. This case may be due to the fact
that the expressions (7a)–(7b) have a maximum error of 0.5% for all crack lengths [32] and the flexibility coefficients, which
are functions of crack ratio and go infinity with a/h approaching unity, may not be able to describe the vibration
characteristics for crack ratios closing to unity [24]. It is obvious from the figures that, each curve, shifting up, approaches
the curve ðf 1c=f 1nc ¼ 1Þ of non-cracked beam as the crack location L1 moves towards the free end of beam and, at last,
coincides well with the curve of non-cracked beam for the crack locations higher thanL1 ¼ 0:5L. This phenomenon can be
explained as; the drop in frequency is greater for crack positions close to the clamped end while the frequency is almost
unchanged when the crack is located close to the free end. In other words, the frequency drop is the greatest for a crack
position located where the bending moment is the largest [17].
8.2. Buckling load experiments

For each beam tested, the buckling load is predicted using numerical analysis. The experimental results along with
the corresponding numerical results are given in Table 2 to be able to show the differences between them and plotted in
Figs. 8(a–k) as functions of crack ratios. Again, the results related to the non-cracked beams are included in Table 2 and the
critical (lowest) loads Pc of cracked beams obtained from both numerical solution and experiments are normalized by the
critical (lowest) load Pnc of the non-cracked beam obtained from experiments. The plots are similar to those plotted for
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Fig. 7. Variation of natural frequency versus crack ratio at different crack positions, —J—: experimental; —D—: numerical results.

C. Karaagac et al. / Journal of Sound and Vibration 326 (2009) 235–250246
fundamental frequencies, so similar observations can be made for buckling loads. The only difference is that the
experimental data are lower than the numerical results and the discrepancies between the curves for crack ratio higher
than a=h ¼ 0:2 are remarkable. This is due to the facts that specimens may have initial imperfections, which may play
important role on decreasing the buckling load, and exhibit little lateral post buckling stiffness especially for the crack
positions where the crack is close to the clamped end. An interesting feature pertaining to the curves is that as the crack
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Table 2
Critical (lowest) buckling loads obtained experimentally and numerically for cracked and non-cracked beams.

Critical load, Pc (N)

L1/L 0.0 0.1 0.2

a/h Exp. FEM Diff. (%) Exp. FEM Diff. (%) Exp. FEM Diff. (%)

0.1 30.127 30.027 �0.33 30.166 30.140 �0.08 30.244 30.293 0.16

0.2 28.302 29.290 3.49 29.283 29.542 0.88 29.342 29.873 1.81

0.3 27.968 28.382 1.48 29.077 28.791 �0.98 29.204 29.331 0.43

0.4 24.005 27.258 13.55 26.036 27.855 6.98 26.301 28.626 8.84

0.5 22.386 25.844 15.44 23.348 26.659 14.18 24.172 27.702 14.60

L1/L 0.3 0.4 0.5

a/h Exp. FEM Diff. (%) Exp. FEM Diff. (%) Exp. FEM Diff. (%)

0.1 30.313 30.432 0.39 30.342 30.524 0.60 30.352 30.579 0.75

0.2 29.656 30.171 1.73 29.714 30.377 2.23 29.783 30.496 2.39

0.3 29.263 29.824 1.91 29.459 30.174 2.42 29.548 30.373 2.79

0.4 27.223 29.356 7.83 28.027 29.892 6.65 28.851 30.205 4.69

0.5 25.790 28.716 11.34 26.565 29.494 11.03 28.057 29.966 6.81

L1/L 0.6 0.7 0.8

a/h Exp. FEM Diff. (%) Exp. FEM Diff. (%) Exp. FEM Diff. (%)

0.1 30.362 30.598 0.77 30.470 30.611 0.46 30.509 30.611 0.33

0.2 29.783 30.548 2.56 30.352 30.568 0.71 30.431 30.572 0.46

0.3 29.607 30.466 2.90 30.283 30.500 0.71 30.421 30.504 0.27

0.4 29.057 30.348 4.44 29.989 30.397 1.36 30.127 30.408 0.93

0.5 28.822 30.181 4.71 29.626 30.259 2.13 29.979 30.276 0.99

L1/L 0.9 Non-cracked. (Pnc)

a/h Exp. FEM Diff. (%) Exp. FEM Diff. (%)

0.0 – – – 30.650 30.625 �0.08

0.1 30.509 30.609 0.33

0.2 30.597 30.574 �0.08

0.3 30.607 30.507 �0.33

0.4 30.617 30.411 �0.67

0.5 30.764 30.278 �1.58
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position moves towards the free end, each curve, shifting up, approaches the curve ðPc=Pnc ¼ 1Þof non-cracked beam and
they coincide well for the crack positions starting from L1 ¼ 0:7L. Significant reduction in the buckling capacity, in
comparison with the capacity of the corresponding beams with no crack, can be seen in many cases. It is clear from figures
that reduction in the buckling capacity is higher when the crack locates near the clamped end of beam. However, this
reduction becomes less as crack position L1 is moved towards the free end and almost negligible when the crack is
positioned very close to the free end. This means that maximum reduction in buckling load occurs at sections subjected to
large bending moments [14].
9. Conclusions

In this study, the effects of crack ratio and crack positions on the fundamental frequencies and the critical (the lowest)
buckling loads of cracked cantilever beams have been investigated numerically and experimentally. A total of 94 both
fundamental frequency and buckling load experiments have been conducted on the cracked and non-cracked specimens to
ensure the validity of the finite element model developed. Plots of fundamental frequencies and buckling loads versus crack
ratios for different crack positions show good correlation when comparing experimental and numerical results. In most
cases experimental results differ within 6% for frequency and 10% for buckling load from the corresponding numerical
results, so numerical analysis based on energy method can predict fairly accurate fundamental frequencies and buckling
loads of considered beams. Results also show that the presence of cracks can reduce both fundamental frequency and
buckling load depending on crack ratio and crack position as concluded in many paper referred here. For small crack ratios,
the reductions in fundamental frequency and buckling load are small, becoming progressively greater at larger crack ratios.
The higher drops in fundamental frequency and buckling load are observed when the crack locates near the clamped end.
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Thus, it is concluded that once the position of crack is fixed, the relative size of crack may be estimated with acceptable
accuracy using the plots to be drawn, showing the changes in natural frequency versus crack ratios and corresponding
mode shapes.

The numerical method presented in this paper is straightforward one involving no tedious mathematics and polynomial
approximation for the displacements has given results with reasonable accuracy. Consequently, the numerical method
offered, of course, applicable easily to the particular cases of structural elements with single or multiple cracks, having
various geometry and boundary conditions provided that the necessary stress intensity factors are known.
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Appendix A

Dv ¼

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 �1 0

0 0 0 1 0 0 0 �1

�1 0 S1 S2 1 0 0 0

0 �1 S3 S4 0 1 0 0

0 0 0 0 1 d d2 d3

0 0 0 0 0 1 2d 3d2

2
66666666666664

3
77777777777775
; Dw ¼

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 �1 0

0 0 0 1 0 0 0 �1

�1 0 S5 S6 1 0 0 0

0 �1 S7 S8 0 1 0 0

0 0 0 0 1 d d2 d3

0 0 0 0 0 1 2d 3d2

2
66666666666664

3
77777777777775

Dc ¼

1 0 0 0

0 1 0 �1

�1 S9 1 0

0 0 1 d

2
6664

3
7775; where

S1 ¼ 2c44EIzd1; S2 ¼ 6c44EIzd2
1

S3 ¼ �2c44EIz; S4 ¼ �6c44EIzd1

S5 ¼ 2c55EIyd1; S6 ¼ 6c55EIyd2
1

S7 ¼ �2c55EIy; S8 ¼ �6c55EIyd1

S9 ¼ �c66GJ

(A.1)

P ¼ ½1 x x2 x3�; R ¼ ½1 x�

a1 ¼ ½a1 a2 a3 a4�
T; b1 ¼ ½b1 b2 b3 b4�

T; c1 ¼ ½c1 c2�
T

a2 ¼ ½a5 a6 a7 a8�
T; b2 ¼ ½b5 b6 b7 b8�

T; c2 ¼ ½c3 c4�
T (A.2)
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